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Executive Summary 
 

Regular and accurate sea lice monitoring is a vital component to any effective integrated pest 

management regime targeted against one of the most costly ectoparasitic pathogens associated 

with modern salmon aquaculture. In most regions with substantial cultured salmon production, 

sea lice (mainly Lepeophtheirus salmonis and various Caligus species) continue to be one of the 

most important fish health concerns. Even in regions where significant infestations tend not to be 

experienced, such as British Columbia or the far north of Norway, it is important to monitor sea 

lice levels to mitigate any potential negative impacts for wild salmon. 

  

In addition to regular monitoring, the recent emergence in a number of regions of tolerance to 

certain chemotherapeutants has emphasised the importance of methods to obtain accurate sea lice 

estimates before and after treatment to properly assess the efficacy of any medication being used 

so as to gain early warning of tolerance issues. However, to date, this involves a manual process 

which is time consuming and dependent for its accuracy on the skill of the individual carrying 

out the count and their ability to access a range of sea pens. Crowding fish within pens to select a 

representative sample also imposes stress on these fish. Because of the time required only a small 

number of fish can be sampled. However as lice numbers have been driven down over the past 

decade, increasingly large samples are required to maintain the statistical reliability of any 

population-level estimates. 

 

The use of underwater imaging has therefore been proposed as an automated and passive 

counting system which can offer the benefits of enhanced repeatability and accuracy, larger 

sample sizes, continuous monitoring, lower costs and lower levels of disturbance to the fish. It 

was proposed to develop such a system as part of the VisuaLice research project discussed in this 

report. To assess the relative value of this novel approach in comparison to traditional manual 

counting it was proposed that a computer model be set up to simulate various scenarios. The 

results from field trials and experiments would be used to parameterise such a model and 

therefore enable the exploration of a range to farm settings, cage configurations, pre- and post-

treatment conditions, in a simulation. This provides a more efficient way to illustrate the utility 

of the automated passive monitoring approach, rather than setting up a whole raft of field-based 

experiments. 

 

A computer model to simulate such scenarios was created by the researchers at UPEI and is 

discussed in the following pages. Unfortunately the field-based trials of the underwater imaging 

system were largely unsuccessful and so many of the key parameters required to complete the 

modelling activities and generate realistic scenarios and outcomes could not be fully explored. 

Nevertheless it is hoped that the framework constructed will be of value in the future and the 

researchers involved plan to publish key documentation around the modelling activities so that 

colleagues have the opportunity to learn from their initial explorations. 
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Note on status of UPEI input into the VisuaLice project 
 

Researchers at the Centre for Veterinary Research (CVER) were contracted to become involved 

with the Eurostars E4721 (VisuaLice) project in 2011. Their particular remit was to, “explore 

how the novel data sets generated can be best exploited. UPEI will use statistical population 

modelling using real world scenarios based on historical lice data from Norwegian and Scottish 

farms”. It was therefore expected that the novel data would be made available, “provided by the 

equipment trials will also be used to examine how valid comparisons can be made between lice 

infestation data generated by existing manual inspection and data generated by the new 

technology”.  

 

Unfortunately, as is always the risk when developing new methods and equipment, there were 

challenges with the field trials to such an extent that it became clear than the research planned at 

UPEI would have to move ahead in the absence of the “novel data” expected, and UPEI created a 

framework to evaluate such, as and when they might become available.  

 

The situation in mid-2011 was summarised in a note from Thorvaldur Pétursson of Vaki 

Aquaculture Systems who was acting as the project manager for the overall Eurostars E4721 

(VisuaLice) project. In this he states: 

 

"Trials in Macrihanish in November 2011 gave us further valuable information 

but they also showed that the attenuation of the UV wave lengths that we are 

using is far higher in costal seawater than we anticipated.  Though, this gave us 

quantification of parameters that we needed to improve, we were close to the 

physical and practical limitations of the light source we were using...  There are 

however still some technical challenges to be solved relating to the shaping of the 

light. This has, unfortunately, delayed our progress. It is not a failure and we are 

still on a track though we are delayed. This of course means that we have not been 

able to produce the data that UPEI needs for their part of the project.  UPEI has 

spent time and effort in preparing the data processing and creation of the models 

and are waiting for us to advance the hardware development and data collection." 

(7th May, 2012.  Italics mine) 

 

As noted, this meant that our ability to fully progress the modelling and data analyses aspects of 

the project were compromised. Nevertheless a reasonable amount of effort had been expended 

and a simulation framework had been constructed to allow for the exploration of various 

sampling strategies. It was agreed with the sponsoring partners, Havbruksinstituttet and FHF 

Norway, that the delays and lack of progress in supplying novel data sets meant that the full 

research contract could not be completed. Instead it was agreed that 50% of the contracted work 

could be funded in the form of a scientific report that summarised the creation of the simulation 

‘workbench’, together with some sample outputs of the types of results and scenarios that could 

be addressed by the approach adopted. The main report, which follows, provides a summary of 

this research activity and it is hoped that in the future this will form the basis of a scientific 

publication; one of the original goals associated with UPEI’s involvement in this project. 
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Counting sea lice on Atlantic salmon farms – an individual based modelling 

framework to allow for the exploration of comparative approaches 
 

 

Introduction 

 

Sea lice are naturally occurring ectoparasitic copepods that transmit directly between hosts in 

their planktonic larval stage and, to a much lesser degree, in the adult motile stage. They occur 

frequently in marine salmonid farms, the most common species in Norway and Scotland being 

Lepeophtheirus salmonis, with the generalist Caligus elongates occurring at lower abundances 

(Bjorn & Finstad 2002, Revie et al 2002, Heuch et al 2003, Lees et al 2008) . Infestations can 

cause significant morbidity and mortality (Costello 2009) and can be costly in terms of loss of 

fish, chemical treatment and are environmentally damaging when they infect wild salmon 

(Costello 2009, Krkošek et al 2005). 

 

In a number of countries, including Norway, sea lice infections in farmed salmon are regulated 

using a maximum threshold in abundance of mobile stages. Historically, farmers in Norway were 

required to count sea lice on salmon at regular intervals and report the highest mean count in a 

month (Jansen et al 2012). However, over the past few years and in common with changing 

practices in other salmon-producing regions, the requirements for counting have become more 

rigorous with weekly counts on a larger proportion of cages now being the norm (Heuch et al 

2011, Jimenez et al 2012, Kristoffersen et al 2013). Despite these increased requirements, sea 

lice assessment on farmed fish is still carried out manually. It is a time-consuming activity; its 

accuracy depends on the skill of the counter who must have physical access to the sea pens to 

carry out any counting exercise (Heuch et al 2011, Elmoslemany et al 2013). In addition manual 

counting can cause stress to the fish as they may be crowded into a small area in order to select a 

sample. Only relatively small sample sizes can be inspected due to limits on time. This can be 

particularly problematic when lice levels are low, which can be the result of limited infection 

pressure or highly effective treatment, as larger samples are required in order to gain reliable 

estimates of the lice abundance. Indeed in such circumstances prevalence may be a better and 

more easily estimable measure than abundance (Baillie et al 2009), but again a fairly large 

sample of fish is required to gain accurate prevalence estimates.  

 

In light of these realities there is a reasonably urgent need to consider automated methods that 

could be used to assist with sea lice counting procedures on salmon farms. Following on from 

some earlier pilot work in this area a research partnership has been formed to explore the use of 

automated imaging systems for this task and the development of novel tools to be made available 

to the aquaculture industry. This collaboration has been taking place under the auspices of the 

Eurostars project ‘VisuaLice E!4721’ and involves Vaki Aquaculture Systems (Iceland), Marine 

Harvest (Scotland/Norway), Silsoe Livestock Systems (UK) and the University of Prince Edward 

Island (Canada). Ultimately the portable imaging frames being developed will support the 

automatic detection and counting of sea lice on salmon. The frames can be suspended at various 

depths in the salmon net pens so that the fish are able to swim through them. Images of the fish 

are collected and the data passed to a central computer which over a period of time will be able 
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to build up an estimate of the sea lice population. Feasibility studies were conducted in 2010 and 

2011 on salmon in a tank-based setting. This work demonstrated that underwater images had the 

potential to detect lice on individual salmon. 

 

Companies involved in developing the equipment plan to make it available to the aquaculture 

industry. Such an automatic passive system to count sea lice would facilitate enhanced 

repeatability and accuracy, larger sample size, continuous monitoring and a lower level of 

disturbance to the fish. It therefore has the potential to provide more detailed estimates of the lice 

population dynamics (rates of population change, short term population variations and enhanced 

accuracy of prevalence estimation) on which to base intervention and targeted treatment 

decisions. Savings should be significant to industry both in terms of reduced manpower and 

better targeted treatments. 

 

A key question that must be answered relates to the likely reliability of using such a method of 

counting and knowing how the data generated will compare to those obtained by manual 

counting methods. To investigate this issue the research partners at the University of Prince 

Edward Island (UPEI) used data generated by a computer simulation, based on an individual 

based model of a salmon production cycle, to assess how various sampling techniques may 

influence estimates of parasite infection in farmed salmon populations.  

 

 

Aim 

 

To compare the efficacy of different lice sampling strategies, by creating simulations of both 

manual counting and automated counting approaches. These may be used to assess how the 

various monitoring strategies would estimate the true lice population within a simulated cage of 

fish (for which the true sea lice population will be known).  

 

 

Methods 

 

The model 

A stochastic individual based model was developed to simulate individual Atlantic salmon 

within a cage on a typical salmon farm over a two-year production cycle. The model includes a 

population of sea lice L. salmonis, which can parasitise the salmon hosts. The lice develop 

through a simplified four-stage sea lice life-cycle (Figure 1). The stages that are represented in 

the model are eggs, planktonic copepodid, juveniles, and adults (including gravid females). 

Copepodids are free living, while juvenile (chalimus and pre-adults) and adults are attached to 

individual fish; eggs are attached to gravid females until they hatch. An additional parameter 

models the introduction of copepodids from external sources (e.g. other farms or from wild fish). 

The parasite burden on each fish can be tracked throughout a two year production cycle. In 

reality lice develop through a greater number of stages, however, for simplicity, the 

developmental stages of two nauplii (I and II) were represented within a planktonic copepodid 

stage, while the four chalimus stages (I, II, III and IV) plus the pre-adult stages are represented 

by a juvenile stage. 
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Parameterisation 

The model was parameterised using various estimates from the scientific literature (see Table 1). 

The model sea lice have temperature-dependent development and reproductive rates (Stien et al 

2005). Each life stage experiences mortality based on a stage-specific mortality rate. A 

probability parameter determines the lice gender as well as the successful attachment of 

copepodids to salmon. 

 

 

Water temperature 

Temperature was modelled as a function of time in days by fitting water temperature data from 

Scotland from four different years with an oscillatory sinusoidal curve [Equation 1] where a is 

the mean temperature, b is the magnitude parameter, and c is a phase shift parameter. (For the 

empirical data considered:  a = 13.17, b = -8.14, c = 184).  Using these values, the temperature 

curve simulates temperature from spring over one year and therefore begins at the time when 

salmon smolts are typically transferred to salt water cages. 

 

[Equation 1] 

                   
        

   
  

 

 

Lice development 

Development of each lice life stage was modelled by accounting for two phases of development 

– a minimum development time (   e.g. minimum number of days an individual spends as an 

egg, followed by a time taken to complete development (ν) e.g. time taken for eggs to complete 

hatching once hatching begins. These values were estimated from published studies that 

investigated development of L. salmonis across temperatures ranging from approximately 8 to 

14°C, in particular those summarised in (Stien et al 2005).  

 

Minimum development time (   (in days) was modelled using a modification of Belehrádek’s 

formula (Equation 2), where      is the minimum required development time for individual i in 

stage j at temperature T.    is a shape parameter and   
  

 is the average   at 10°C. 

 

[Equation 2]  

 

                        

 

 

The mean and standard deviation for    and    were estimated for development of eggs, nauplii, 

chalimus, pre-adults and adult females by (Stien et al 2005), (Table 1). Variation in 

developmental rates was incorporated by selecting values from a normal distribution – also 

estimated by (Stien et al 2005). Model development rate of eggs to copepodid, chalimus to adults 

and female adults to gravid females followed this temperature-dependent development equation, 

using the stage specific parameters. 
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The model did not incorporate the nauplii stage or the pre-adult stage. Development rate of eggs 

to copepodid was therefore represented as the sum of the development rate of eggs to nauplii and 

nauplii to copepodid. Similarly, development of chalimus to adults incorporated the development 

rate of chalimus to pre-adults and pre-adults to adults. Chalimus developed into male and female 

adults according to a probability of 0.5. There is evidence that the minimum development time to 

pre-adult and to adults differs between gender and therefore male development rate was higher 

than the female development rate.  

 

The stage specific time taken to complete development (ν) was added to the minimum 

development time to represent the time taken for development after the minimum developmental 

time (  . These values were also estimated from (Stien et al 2005), and are shown in Table 1.  

 

The total rate of development in the model for each stage was calculated assuming that 0.995 of 

individuals develop to the next stage. The rate was therefore –ln(0.005)/(    ν). 

 

Mortality 

Life stage specific mortality rates were constant instantaneous values (Table 2) since there was 

insufficient data available with which to determine how these parameters vary with temperature. 

As the model does not incorporate the detailed nauplii or pre-adult stages, the mortality rate for 

copepodids was estimated using the product of the mortality rate of the nauplii and copepodid 

stages. Similarly, mortality for juveniles incorporated the mortality of the various chalimus and 

pre-adult stages. Salmon hosts are presumed not to experience any mortality throughout the 

production cycle. 

 

Infection rate 

Salmon are exposed to free-living copepodid that are either the offspring of louse on the salmon 

farm (internal infection) or that come from a source external to the farm (external infection). 

Environmental conditions such as water currents, local sea lice management, distance between 

farms, number of salmon on a farm and presence of wild salmon in the region can influence the 

rate of infection from internal or external sources (Costello 2009, Saksida et al 2011, Jansen et al 

2012). External infection rate was estimated from (Tully & Nolan 2002, Revie et al 2005). Since 

there is little information with which to estimate the external infection pressure, a range of values 

was tested in the model. This was represented as a number of copepodid entering the population 

per day. Internal infection pressure was the result of gravid female fecundity along with egg 

development and survival rates. There is little information about the rate at which copepodid are 

successful at finding and attaching to a salmon host. In reality the attachment process clearly 

depends on host density and local environmental conditions. Estimates of attachment rates of 

copepodids span values of 0.25, 0.81 and 0.98 lice fish
-1

 day
-1

 in a cage study by (Tully & Nolan 

2002), (Table 2). Current tests used a value of 0.95 (95% of copepodids attached to a host) based 

on these estimates, but sensitivity analyses will be carried out in the next phase to investigate 

how sensitive the models are to these assumptions. 

 

Sea lice fecundity 

Clutch size of gravid female lice has been estimated to be between 70 and 583. The size of the 

second clutch tends to be larger than the first, and number of eggs appears to be independent of 

temperature. Average clutch size was calculated based on these estimates as 331 eggs per clutch.  
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In reality sea lice eggs in one egg string develop concurrently and complete development within 

approximately 65 hours of the string being produced (Johnson & Albright 1991). However in the 

model gravid female egg production was represented as a constant daily rate. This method was 

used because the model simulated a population of lice, rather than identifiable individual adult 

lice that could be assigned two egg strings each. 

 

To account for a low probability of sexual reproduction at low parasite intensity, adult females 

only developed to gravid females when they were attached to a fish where there was also a male 

adult louse present. This represented for the observation that at low lice levels female lice are 

less likely to encounter a male louse. 

 

Egg viability 

Egg viability decreases with decreasing temperature, however there was little data to estimate a 

temperature dependent parameter. Egg viability was therefore assigned a constant value of 85% 

based on estimates from previous studies (Table 2). 

 

Starting conditions 

The simulations have currently been run using 'virtual cages' of 5000 salmon. This number can 

be easily increased once the researchers have decided what the more interesting parameters to 

explore are. (Larger numbers will result in longer simulation runs and larger data sets to post-

process so it makes sense to have a bit more focus before engaging in these larger trials.) None 

of the salmon are parasitised on entry to the model, indeed there are no free-living stages present 

at the start of the production cycle. The infestations that arise are a consequence of copepodids 

that initially arrive from external sources entering the model at a user-determined rate of external 

infection.  

 

Chemical treatment to reduce parasite infection 

The effect of treatment is simulated using an instantaneous mortality, representative of topical 

bath treatments which cause instant knock-down. Treatment reduces the number of chalimus and 

mobile lice populations when the total number of mobiles is an average of more than four per 

fish. The rate of reduction, i.e. the treatment efficacy, can be defined for a given treatment and 

applies to all lice on all fish. The sensitivity of sea lice population dynamics to different 

treatment efficacies can be investigated by changing the estimates of efficacy.  

 

Software implementation 

The model was implemented as a bespoke piece of computer software using the Visual Basic 

(Version 6, Microsoft Corporation, Seattle, Washington, USA) programming environment. It 

uses the day as the basic time step and can simulate fish and their infestation with lice over the 

period of a two year production cycle. 

 

Data output 

The results from the model are exported as a structured text file and may be saved or exported to 

statistical analysis software. Output parameters can be determined by the user. Since the model 

runs on a continuous daily basis and many calculations use probability and rate functions, the 

population numbers are reported as single values. These are converted to integers when the 

model has completed running by rounding to the nearest whole number.  
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Data Analysis and Results 

 

Simulations were also run to test the effect of various treatment interventions on the mean 

numbers of mobile lice per fish so that simulated estimations would not only address the issue of 

routine surveillance but could also be used to compare the accuracy of treatment efficacy 

estimations. Three different scenarios were tested: a bath treatment was applied when the mean 

number of mobile lice per fish reached 1 lice, 2 lice or 4 lice respectively. To investigate the 

effect of different counting strategies estimates of the mean number of lice per fish were carried 

out using different approaches. Counts of lice were carried out on random samples of: 10 fish, 20 

fish, 50 fish, 100 fish, 1000 fish or 5000 fish (the total population). To provide some illustrative 

results these counts were taken on day 365 of the first year of the production cycle, but clearly 

the sampling could be simulated on any day. In addition it would be possible to simulate daily 

counts (something that would be possible with the automated counting technology) and compare 

the estimates derived from the approach to those gained from the more normal weekly counting 

methods used in manual counting. In addition the presumed accuracy on each individual fish 

counted is the same irrespective of whether a human or machine is carrying out the task. Once 

again this could clearly be altered but the researchers currently had no data on which to set up 

parameters indicating the relative accuracy of these different methods. (It is hoped that some 

initial indication of such values will be forthcoming from the pilot trials being carried out by 

other partners in the VisuaLice project.) 

 

As far as initial results are concerned, the model mostly provided the types of outcome that 

would be expected. Though it was somewhat surprising that the variance components of the 

simulation were less differentiated than might initially have been expected. 

 

As the treatment trigger level was increased the mean number of lice per fish obviously also 

increased (Figure 2).  [Note, the lack of difference between panels (b) and (c) is likely due to the 

fact that a treatment took place late in the first year and the lice levels are still just 'recovering' 

from this intervention. Simulating more sample points would provide some clarity on this issue.] 

It can also be seen that as the sample size increased (from 10 to 5000 fish) the confidence 

intervals for the estimate of number of mobiles per salmon decreased (Figure 2). However, the 

reduction - particularly after 100 fish - was not that marked; the researchers are still investigating 

the cause of this slightly unusual outcome. (As can be seen from some of the later figures this 

was not always the case.) 

 

Simulations were run to test the influence of the external infection pressure on lice infection. 

Four different scenarios were tested: an external infection pressure of 1000, 2000, 4000 or 5000 

copepodids entered the lice population per day. As the external infection pressure increased, the 

mean number of lice per fish also increased (Figure 3). Once again the counts were simulated to 

happen of day 365 of the first year of production and the results were collected for scenarios 

involving random samples of 10, 20, 50, 100, 1000 and 5000 fish. There were some anomalous 

results in terms of estimates of mean with some scenarios (e.g. [a] and [c]) showing a declining 

estimate of the mean value, while others (e.g. [d]) showing the opposite trend. It was not 

expected that the estimated mean would vary much and certainly not in a consistent manner (i.e. 

the result from panel [b] were more like those expected). In may be that the relatively small 
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number of replicate runs (N=10) is the cause of these anomalies and larger numbers of replicates 

will be tried once the focus of the simulation studies has been more clearly determined. What 

was relatively clear and consistent was that the confidence intervals around the estimated mean 

number of mobiles per salmon decreased as the sample size increased (Figure 3). 

 

To investigate the potential sources of variability it was decided to look at the distribution of 

mobile lice on the whole simulated salmon population at a fixed point in the production cycle 

under different assumptions. Once again this was carried out for day 365 of the simulated run 

and the results from four different simulations are shown in Figure 4. While there were 

differences between these model runs, as the images suggest, they were somewhat less varied 

than we had expected. Once again the researchers are investigating the simulation code and in 

particular the daily 'rounding' adjustments that are made to see whether this is having an undue 

influence on the range of values resulting from the various simulation runs. 

 

The distributions which were observed (Figure 4) indicated that as the external infection  

pressure increased so did the resultant levels of lice observed, assuming similar treatment trigger 

threshold, which is as would be expected. However, what was not expected was the fact that - 

particularly at these relatively low mean levels of infestation - there were so few fish which did 

not have any lice present on them. This varies dramatically from the over-dispersed distributions 

that are typically seen in empirical data and while some over-dispersion can be seen in the 

scenarios with higher external infection pressure (4000 and 5000 copepodids per day in Figures 

4d and 4e respectively), this does not appear to reflect the range of values that would be seen in a 

typical cage of salmon. (Or at least not what we see in empirical data based on samples of much 

lower numbers of fish.) Once again this is a subject that requires further investigation of the 

model coding structures.  
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Figure 1. Simplified life cycle of L. salmonis used in the individual-based model 
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Juvenile 

Adults 
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Figure 2. Estimates and Confidence Intervals on the mean total mobiles per fish based on different treatment trigger levels 

Average number of mobile lice per fish to trigger a treatment: a=1, b=2, c=4.  

(Ten replicates were simulated per figure. A constant external infection pressure of 2000 copepodids per day was used in all cases.)  
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Figure 3. Estimates and Confidence Intervals on mean total mobiles per fish under different external infection pressure 

External infection pressure was varied from: a=1000, b=2000, c=4000, d=5000 copepodid per day.  

(Three were ten replicates pre figure. A constant treatment trigger level was set at a mean of 4 mobile lice per fish.) 
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Figure 4. Parasite infestation of each member of the population of 5000 fish as simulated at day 365 of the production cycle 

The four 'columns' of graphs represent different replicates of the same model with the same parameter combination. The five different scenarios 

modelled represent different combinations of external infection pressure and treatment trigger levels. 

(External infection pressure: a=1000, b=1000, c=2000, d=4000, e=5000.  Mean mobile lice to trigger a treatment: a= 2, b=4, c=4, d=4, e=4.) 
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Table 1. Parameter values for temperature dependent development rates of sea lice 

(Lepeophtheirus salmonis) from Stein et al. (2005).  

 

Life Stage transition Β1  

(Standard 

Error) 

Β2 

(Standard 

Error) 

v time take to 

complete 

development 

(days) 

Eggs – Pre-infective nauplii 41.98 (2.85) 0.338 (0.012) 2.7
a
 

Pre-infective nauplii – infective copepodid 24.79 (1.43) 0.525 (0.017) No information 

Chalimus – Pre-adult female  74.7 (33.64) 0.246 (0.007) 4.2 

Chalimus - Pre-adult male 74.7 (33.64) 0.255 (0.007) 3.7 

Pre-adult female – adult female 67.47 (20.36) 0.197 (0.006) 15.8
b
 

Pre-adult male – adult male 67.47 (20.36) 0.177 (0.006) 11.3 

Adult female – gravid female
c
 41.98 (2.85) 0.338 (0.012) 2.7 

 
a 
Egg development rate after the minimum development time. The probability of egg 

development has been estimated to be 0.995 in 2.7 days. This was converted to a probability of 

development by (Stien et al 2005) as follows:-log(0.005)/2.7=2 ind
-1

 day
-1

. The rate used in our 

individual based model was calculated so that ≥0.995% of eggs had developed after 3 days. The 

rate used was 0.83. 

 
b 

Estimates of preadult instantaneous development ranged from 0.33 to 0.34 for females and 0.33 

to 0.80 for males. These equate to a development time (assuming that 0.995 of preadults 

develop) in the range of 15.6 to 16.1 days for females and 6.6 to 16.1 days for males. 

Mean values of 15.8 and 11.3 days were selected to reflect that females tend to develop more 

slowly than males. 

 
c
 It was estimated (Heuch et al 2000) that the time taken for an adult female louse to develop a 

new pair of eggs strings is similar to the time from egg string extrusion to egg hatching. Females 

become gravid females if they are attached to a fish where there is also a male louse present.
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Table 2. Parameters estimates for constants used in the model 

 

Parameter Parameter value Parameter value 

reported in the literature 

Literature source 

Egg mortality 0.419 

Egg mortality = 0.3 

Nauplii mortality = 0.17 

 

 Stien et al, 2005 

Egg Viability 0.756 50-92.5% (Mean = 75.6%) Heuch, Nordhagen, & Schram, 

2000; Ritchie, Mordue, Pike, & 

Rae, 1993;  

   Johnson & Albright, 1991 

Copepodid Mortality
b
 0.22 ind/day

-1
 

 

 Stien et al, 2005; Johnson & 

Albright, 1991  

Infection rate – probability that 

copepodid will attach to a salmon 

0.5   

Gender selection – proportion of 

copepodid that become female at time of 

development to chalimus 

0.5   

Chalimus Mortality Preadult male mortality = 0.073
c
 

Preadult female mortality = 0.053 

Chalimus mortality = 0.0063 

0.018-0.18 (mean=0.073) 

0.035-0.074 (mean=0.053) 

0.002-0.01 (mean=0.0063) 

Stien et al, 2005 

 Combined mortality rate = 0.069   

    

Adult Male Mortality 0.087  0.03-0.06 (mean=0.045)  

Adult Female Mortality 0.14  0.02-0.04
a
 (mean=0.03)  

Gravid Female Mortality 0.14   Stien et al, 2005 

Eggs per egg string
d
 331 

 

70-583 eggs (mean 331) Ritchie, 1993; Heuch et al, 

2000 

   Johnson & Albright, 1991; 

Ritchie 1993, Tully & Whelan, 

1993; Heuch et al, 2000 
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Treatment efficacy 0.95   

Treatment trigger 1-4   

External copepodid source 1000-5000   

Number of salmon 5000   

 

a
 Stien et al (2005) indicate that the estimates of adult mortality from some studies contained little data. These are best estimates, but 

could be higher. 

b 
The proportion of nauplii that survive to develop to copepodids has been estimated at 50%, translated to a mortality rate of 

0.17ind/day based on the knowledge that nauplii have a residence time of 4 days. The mean survival time of copepodids has been 

estimated at 4.6 days, which suggests a mortality rate of 0.22 ind day
-1

. 

c
 Since female and male pre-adult mortality were very similar, we used one value (a mean) for preadult mortality. This was combined 

with chalimus mortality rate to give a total mortality rate for the model chalimus. 

d
 Gravid females produce two egg strings, the second tends to produce more eggs than the first. The mean per egg string was 331 eggs. 

The rate of egg production per gravid female was calculated as a proportion of eggs produced per day for the number of days that the 

louse spends as a gravid female. Time spent as a gravid female =      . The rate was therefore 331/     . 
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Discussion 

 

Clearly it was initially hoped that the provision of various parameter estimates from the passive 

monitoring equipment would allow the models to be re-run under a wide range of scenarios to 

provide feedback to VisuaLice project partners on the likely performance of such an approach. 

As it became clear that these data were not going to become available within the time-frame of 

the research activities documented here, it was important to create some output to illustrate the 

utility of such simulated outcomes. In particular we sought to simulate the likely accuracy 

estimates of any automated approach – rather than focussing on sample size issues – but in the 

absence of empirical data it was not possible to validate such estimate, beyond the internal 

validation that can be provided by undertaking and range of sensitivity analyses. 

 

Temperature dependent parameters were included in the model when there was sufficient 

evidence to include such variations. While there is limited data to suggest that some parameters 

may be temperature dependent e.g. attachment rate of copepodids (Tucker at al 2000), there was 

not enough information to fully estimate many potentially temperature dependent parameters and 

in these cases the parameters were simply represented by constants. In all of the simulations 

currently reported a single instantiation of water temperatures has been used – based on typical 

sea water characteristics from the west coast of Scotland. It is relatively straightforward to 

simulate alternative sea water temperature profiles, though the research team have found that a 

few degrees of difference from these typical north-east Atlantic temperatures does not result in 

significant differences in the modelled outcomes.   

 

In summary, there is a pressing need to develop automated methods that could be used to assess 

sea lice numbers on farmed salmon. A computer model has been developed that can provide an 

efficient way of comparing such an automated passive monitoring approach with the more 

traditional manual counting methods. When additional data becomes available, it will enable an 

effective in-silico assessment of such novel automated counting approaches under a range to 

farm settings, cage configurations, and pre-/post-treatment conditions.   
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